

AMS-02 CDR Integration Hardware Fracture Analysis

Fracture Control

- Establish fracture control requirements of the AMS-02 payload integration hardware for Space Shuttle and International Space Station (ISS)
- Examine the flight hardware for identification of fracture critical components and implement appropriate inspections, analysis and controls
- Ensure safety of crew, Orbiter and ISS such that failure of any structure will not result in a catastrophic hazard

- Fracture Control (cont)
 - Reference documents:
 - Fracture Control Plan for JSC Flight Hardware (JSC 25863, Rev. A), August, 1998
 - Fracture Control Requirements for payloads using the Space Shuttle (NASA-STD-5003), October, 1996
 - Fracture Control Requirements for Space station (SSP 30558, Rev. B, June 1994)
 - Fatigue crack Growth Computer program NASGRO version 4.02, September 2002

- Fracture Control (cont)
 - Design Safe-life verification for AMS-02
 - Combined fatigue loading spectrum derived in LMSEAT 33818, Rev. A, February 2002.
 - Spectrum includes Air transport, Truck transport,
 Launch/Landing and on-orbit loading events
 - STA vacuum case includes sine sweep test and acoustic test spectrums
 - 3 Orbiter missions for Lift-off/Landing
 - 3 operational years and 2 contingency years duration on ISS
 - Scatter factor of 4 is used for the analysis

- Fracture Control (cont)
- Classification of AMS-02 integration Hardware Components
- Non-Fracture Critical Parts
 - Low released Mass (<0.25 lb)
 - Contained
 - Fail-safe
 - Low risk

- Fracture Control (cont)
- Pressurized Components/Sealed containers
 - Non-Hazardous Leak-Before-Burst (LBB) mode of failure
 - Through the thickness crack with length 10 times wall thickness will not result in unstable fracture
 - Components, lines and fittings comply with NSTS 1700.7B and ISS addendum
 - Components are made from metal alloys
 - Components that sustain continued crack growth should have safe-life against burst for remaining cycles

- Fracture Control (cont)
- Fasteners and shear pins
 - To be classified as fail-safe parts they must meet the following requirements:
 - Shown by analysis or test that due to a single failure the remaining structure can withstand the loads with a factor of safety of 1.0
 - Adequate quality control is implemented to ensure that the remaining structure is unflawed

- Fracture Control (cont)
- Fracture Critical components
 - Safe-life analysis will be performed with NASGRO program
 - Size of flaw will be based on the appropriate NDE techniques or on proof testing
 - All fracture critical components will be NDE inspected
 - NDE inspections shall be conducted as per standard aerospace quality procedures

• Vacuum Case Components

- Inner cylinder
 - Inner cylinder classified as low risk
 - Material 2219-T852 rolled ring forging (AMS4144)
 - NASGRO Model SCO5
 - Thickness 0.125 in., diameter 44.398 in
 - Crack size a = 0.025 in., a/c = 1.0
 - Max tensile stress 24842 psi
 - Analysis done for STA and flight inner cylinders
 - Analysis shows that crack growth is stable

Inner cylinder weld

- Inner cylinder weld is classified as fracture critical
- Weld properties used from sample tests done at NASA and LMSO
- Dye penetrant and ultrasonic inspection of the weld will be performed
- NASGRO Model SCO5 Thickness 0.259
 in., diameter 44.398 in
- Crack size a = 0.075 in., a/c = 1.0
- Max tensile stress 22769 psi
- Analysis done for STA and flight inner cylinders
- Analysis shows that crack growth is stable

Conical Flange

- Conical flange is classified as low risk
- Material 2219-T62 plate
- NASGRO Model CCO1 for conical flange circumferential ribs
- Thickness 0.15 in., Width 0.5 in
- Crack size a = 0.025 in., a/c = 1.0
- Max tensile stress 28080 psi
- Analysis done for STA and flight conical flanges
- Analysis shows that crack growth is stable

- NASGRO Model CCO2 at conical flange bolt locations
- Thickness 0.50 in., hole diameter
 0.272 in
- Crack size a = 0.025 in., a/c = 1.0
- Max tensile stress S0=12549 psi,
 S3= 11647 psi
- Analysis done for STA and flight conical flanges
- Analysis shows that crack growth is stable

• Support ring

- Support ring is classified as low risk
- Material 7050-T7451 Rolled ring forging
- NASGRO Model SCO1 at lower support ring flange
- Thickness 0.149 in., width 1.625 in
- Crack size a = 0.025 in.,a/c = 1.0
- Max tensile stress S1= 21594 psi
- Analysis done for STA and flight conical flanges
- Analysis shows that crack growth is stable

SC01

$$S_1 = \frac{6M}{Wt^2}$$

$$0 < \frac{2c}{W} \le 1$$

$$0.1 \le \frac{a}{c} \le 1.2$$

Support ring (cont)

- NASGRO Model SCO1 at upper support ring flange
- Thickness 0.25 in., width 4.625 in
- Crack size a = 0.025 in., a/c = 1.0
- Max tensile stress 23922 psi
- Analysis done for STA and flight conical flanges
- Analysis shows that crack growth is stable

SC01

$$S_1 = \frac{6M}{Wt^2}$$

$$0 < \frac{2c}{W} \le 1$$

$$0.1 \le \frac{a}{c} \le 1.2$$

- Outer cylinder
 - Outer Cylinder is classified as low risk
 - Material 7050-T7451 Rolled ring forging
 - Fracture analysis will be done with low risk crack size

- USS-02 Components
 - Friction stir welded tubes are classified as fracture critical
 - Upper trunnion bridge
 - Lower trunnion bridge
 - Lower angle tube
 - Weld properties obtained from tests performed by NASA and LMSO

• Upper trunnion bridge

- **Material 7050-T7451 plate**
- Inspection as per NASA/JSC PRC-0014 class A
- NASGRO Model SCO1
- Thickness 0.25 in. width 6.292 in
- Crack size a = 0.10 in., a/c = 1.0
- Max. tensile stress 24537 psi
- Analysis shows that crack growth is stable

$$S_1 = \frac{6M}{Wt^2}$$

$$0 < \frac{2c}{W} \le 1$$

$$0.1 \le \frac{a}{c} \le 1.2$$

Friction stir welded tube

• Lower trunnion bridge

- Material 7050-T7451 plate
- Inspection as per NASA/JSC PRC-0014 class A
- FLAGRO Model SCO1
- Thickness 0.25 in., Width 4.918 in
- Crack size a = 0.10 in., a/c = 1.0
- Max tensile stress 22312 psi
- Analysis shows that crack growth is stable

SC01

$$S_1 = \frac{6M}{Wt^2}$$

$$0 < \frac{2c}{W} \le 1$$

$$0.1 \le \frac{a}{c} \le 1.2$$

Lower angle tube

- Material 7050-T7451 plate
- Inspection as per NASA/JSC PRC-0014 class A
- NASGRO Model SCO1
- Thickness 0.25 in., Width 4.562 in
- Crack size a = 0.10 in., a/c = 1.0
- Max tensile stress 18816 psi
- Analysis shows that crack growth is stable

$$0 < \frac{2c}{W} \le 1$$

$$0.1 \le \frac{a}{c} \le 1.2$$

- USS-02 Components (cont)
- Fracture analysis for the following items will be done:
 - Upper VC joint
 - Lower VC joint
 - Sill joints
 - Diagonal strut
 - Sill bracket
 - Diagonal sill bracket
 - Sill trunnions
 - Lower center body joint
 - Keel assembly

- The following items on the Payload attach system (PAS) are classified as fracture critical:
 - Platform
 - Bearing Housing
 - Bridge beam
 - Capture bar
 - Analysis will be done for these items with the standard dye penetrant NDE crack sizes

